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Exact solutions in nonlinear diffusion 
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S U M M A R Y  
A method of linearizing the one-dimensional nonlinear diffusion equation subject to arbitrary initial conditions and 
a flux boundary condition at the origin is shown to apply if and only if the diffusivity D (0) = a (b - 0)- 2.0 is concentration; 
a ( > 0) and b are constants. The exact solutions which follow are, in general, implicit, but explicit solutions are found 
for the instantaneous source and for redistribution in the finite region. The source is necessarily distributed with 
concentration b, in contrast to the classical point source. Redistribution solutions are explicit for all initial distributions 
which may be represented through truncated Fourier cosine expansions of 4 terms or less. 

I. Introduction 

The nonlinear diffusion equation arises in many applications, including physical chemistry, 
heat and mass transfer engineering, the physics of solids, metallurgy, fluid mechanics, soil 
mechanics, and the earth sciences. Solutions satisfying any well-posed set of conditions are, in 
principle, always available through the brute-force use of finite-difference methods on high- 
speed computers: but, for both intellectual and economic reasons, it is desirable to take the 
study of nonlinear diffusion as far as we can by the methods of mathematical analysis. Analytical 
and quasi-analytical methods are, in fact, to hand for treating many problems in nonlinear 
diffusion (e.g. [ 1-4] ); for certain problems, however, including those of instantaneous sources, 
those of redistribution, and those subject to flux boundary conditions, the established armoury 
of methods and of exact solutions is very meagre. This paper presents an analytical method of 
attacking these problems, which, in general, yields exact solutions in implicit form,, and gives 
explicit exact solutions in some instances including the problems of the instantaneous source 
and of redistribution in the finite region, treated in sections 3-4 and 5, respectively. The work 
entails the reinterpretation and extension of a method due to Storm [-5]. 

2. Linearization procedure 

We are concerned with the one-dimensional nonlinear diffusion equation 

& = ~xx " (2.1) 

Initially we take the diffusivity D as an arbitrary non-negative function of concentration 0; 
t denotes time and x the space coordinate. The Kirchhoff transformation [6] 

f ~ 0 = D(O')dO' (2.2) 

reduces (2.1) to 

aO 0 2 0  
at - D ax ~ . (2.3) 

We obtain a linear secohd-order term through the substitution 

(2.4) 
, )  v 
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which implies 

0/0x = D -~ 0 / 0 X .  

We find that 

0 2 O 0 2 O 
D - -  

0 X  2 - O X  2 

and that 

�89 dO \0x/ (2.5) 

I•) OQ~t ) 06) OX 
= + U 2 •  x X 

8 0  1 0 0  D-~ ~ N (x', t)dx' 
x o 

; = 0 0  1 0 0  D-  ~ dD 0 2 0  (x', t)dx' (2.6) 
x 2 ~ o dO 8x 2 

The suffixes distinguish between the derivative at fixed x and that at fixed X. 
Now the integral of (2.6) can be evaluated in terms of 80/8x if and only if 

D -~ dD/dO = constant = 2m. (2.7) 

Under this condition the integral reduces to 

2m [O0/Ox-  (O0/Ox)x=o] . 

We discard at once the trivial case m=0,  i.e., D=constant .  When (2.7) holds, (2.5) and (2.6) 
become, respectively, 

0 2 0  820  ( 0 0 ~  2 
D Ox ~ - OX 2 roD-�89 \ O X /  

and 

8 0  = 8 0  - mD-~  \ O X )  + m ~ .  
x X x = 0  

Putting these in (2.3) yields the linear equation 

OO O 2 O 00  
Ot - OX z + mf  OX" (2.8) 

We note that -(O0/Sx)x= o =f ,  the flux density at x =0,  and that this may be either constant 
or a function of t. Evidently the problem of solving nonlinear equation (2.1) subject to arbitrary 
initial conditions plus a flux boundary condition at x =0  is reducible to that of solving linear 
equation (2.8). It remains to determine the permissible D(O) functions. Since, from (2.2), 
dO~dO = D, (2.7) reduces to 

D-  ~ dD/dO = 2m . 

Integration yields 

D = a ( b -  0)-2,  (2.9) 

where a =  m-2 and b is a second constant. Equation (2.8) therefore becomes 

80  O 2 O 80  
O~t = 8X  2+ a-~ f 8 X '  

and it follows from (2.9) that we may write (2.2) and (2.4) as 

O = a(b -O)  -1 , 

f E -o(x',Ol x' 
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Storm [5] had found that the nonlinear heat-conduction equation in the semi-infinite 
medium subject to an initial uniform temperature condition and a flux boundary condition at 
x-= 0 may be linearized when the temperature-dependent thermal parameters obey a certain 
relationship. Knight [7] recognized that elementary transformations reduce all such nonlinear 
heat-conduction equations to the form (2.1) with D satisfying (2.9), and that linearization 
carried over to problems with arbitrary initial distributions of 0 and time-dependentf. T h e  
foregoing development of the linearization procedure is essentially that of [7], but it is some- 
what simpler. Knight [7] assumed (2.9), whereas we show here that the linearization applies 
only to D(O) functions satisfying (2.9) and to no others. 

Knight [7] obtained the solution for arbitrary initial distribution and constant f The 
general solution is in implicit form and involves complicated integrals. The remaindej; of this 
paper is devoted to a study of two interesting special problems with f =  0, which lead to explicit 
solutions in terms of elementary functions. 

In the succeeding sections we assume that 0 < b, the equality applying only to the instantane- 
ous source at t = 0. The results hold also for 0 > b (as may be checked by replacing 0 everywhere 
by 2b-0) ,  though some minor physical reinterpretation is needed! for example, the "source" 
of section 3 becomes a "sink". We note further that, although we shall normally think of b as 
positive (especially with 0 < b), this is inessential to the analysis. 

3. Nonl inear  diffusion from an instantaneous  s o u r c e  

The only exact nonlinear instantaneous source solutions available to date have been the similar- 
ity solutions which hold when D oc O"(n >0) and the initial concentration 00=0 everywhere 
[8, 9, 10]. We here develop the explicit exact solution for D satisfying (2.9) and the initial 
concentration away from the source 0o (<  b) uniform but arbitrary. The advantages of the 
present solution are, firstly, that (2.9) is a two-parameter form well-adapted to fitting empirical 
diffusivity data [7, 11] ; and, secondly, that it is free of the mathematically special and physically 
restrictive requirement of previous solutions that D (0o)--0. 

We study the instantaneous source of magnitude 2Q in the infinite region - oo < x___ + oo. 
Our analysis applies also to the corresponding "half-problem" of the instantaneous source Q 
in the semi-infinite region x >0. We seek the solution of (2.1), (2.9) describing the diffusion 
which follows the release at instant t = 0 of quantity 2Q of diffusate in a small region* centered 
on x=0 .  

Equation (2.1) is thus subject to the condition 

t = O ,  [ x l < x , ,  O=Oo+Ox,  1, 

Ixl > x , ,  0 = 0o. (3.1a) 

The required value of x ,  emerges in the course of the analysis. Because of symmetry, the required 
solution satisfies the condition 

t >0,  x = O, ~30/Ox = O. (3.1b) 

The substitutions 

_ b -O b-Oo b-O o a 
b-Oo'  ~ -  Q x ,  4 . -  Q x , ,  z = ~ t ,  (3.2) 

reduce (2.1), (2.9), (3.1a), (3.1b) to 

O~ - 0 r  ; (3.3) 

* The classical abstraction of an instantaneous point source with infinite initial concentration cannot be realized for 
this mode of nonlinear diffusion. The instantaneous source is required to be distributed over a finite nonzero region, 
with finite initial concentration (subsection 4.1). 
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Figure 1. Nonl inear  diffusion from an instantaneous source. The time course of concentration in the dimensionless 
form 1 - 0 ( r  z). Note that 1 - ~ = ( O - O o ) / ( b - O o ) .  ~ is the reduced space coordinate. Numera ls  on the curves denote 
values of  the reduced time z. 

~=0  141<4, 0 = 1 - 4 , 1  . . . .  (3.4a) 
141 > 4 , ,  0 = 1 ;  

" c > 0 ,  ~ = 0 ,  ~ 0 / 0 ~ = 0 .  (3:4b) 

Following section 2, we linearize through the transformations 
O = 0 - 1 ,  (3.5) 

~'(~' ~ ) =  f~ 0-1(4"~)d4'" (3.6a) 

The inverse of (3.6a) is 

4(S, z ) =  f~ O(Z',  ~)d~' . (3.6b) 

In view of (3.4b) the required equation is 

80 02 0 
~z - 8~ 2" (3.7) 

The solution of (3.7) describing an instantaneous point source of magnitude 2 in the infinite 
region with initial unit concentration everywhere except at the origin is [12, p. 50] 

O = 1 + (roT)-* exp ( -  zz/4T). (3.8) 

This solution is for initial condition 

z = 0 ,  - o e < N < + o e ,  O = 1 + 2 6 ( S ) ,  (3.9) 

with 6 the Dirac delta function. Transforming (3.9) through (3.6b) back to a condition on 
0 (4, 0), we obtain 

�9 = 0 ,  rf f l<l  0 = 0  
I ~ l > l ,  0 = 1 .  (3.10) 

This is exactly (3.4a) with ~. = 1. We thus find that (3.8) represents the solution of (3.3) satisfying 
(3.4a) with 4, = 1 [and (3.4b)]. This is the solution we require. We leave discussion of other 
values of ~. to section 4. 

It follows from (3.8) and (3.6b) that ' 

(Z, ~) = S + erf(Z/2T~). (3.11) 
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Rearranging (3.8) as 

Z =  + 2  in (m)_~( 1 - 0  ' 

we find that (3.11) yields the solution explicit in ~, 

I~ (0, z)] = 2 -c In (rcz)_~ ( 1 _ 0  + erf In (rcz)~ ~ _ 0  " (3.12) 

The central concentration follows from the result for 0 (0, z): 

O (0, z) = [1 + (~z) -+]-a  (3.13) 
Figure 1 gives the time course of the concentration profiles in the reduced form 1 - O (4, z). 

4. Nonlinear instantaneous source:  discussion 

4.11 Values of ~, 

�9 We consider separately the three cases: 

(a) 0 <  4 , <  1 ; 

(b) 4, = 1 ; 

(c) 4 .  > 1. 

(a) No solution exists for 0<  4 , <  1. With 00< b, it is impossible to impose a step-function 
source with instantaneous concentration greater than b. The instantaneous point source with 
infinite concentration is the extreme member of this forbidden class of sources. 

(b) Our solution for 4, = 1 represents the distributed instantaneous source at concentration 
b. This is the most concentrated source possible when 00 < b. The solution for this case is much 
simpler, and therefore potentially more useful, than that for less concentrated distributed 
sources. 

(c) The case 4, > 1 holds for distributed instantaneous sources with concentration less than 
b. The relevant exact solution was found in [7]. It is expressible only in implicit form, which 
somewhat limits its utility. Diffusion from sources with initial concentration less than b may 
Often be estimated readily by a suitable use of the solution for 4, = 1 (subsection 4.3 below). 

4.2. Physical applicability of solution for ~, = 1 

Diffusivity function (2.9) is relevant to phenomena where D increases with 0 and reaches a very 
large value at some saturation concentration (i.e. maximum physically possible value of 0). 
These circumstances hold in their essentials for the phenomena of nonhysteretic water move- 
ment in unsaturated nonswelling porous media [1, 3 and, in particular, 13]. 

It is readily shown, however, that singularities in D stronger than IO-b]-" (n< 1) are un- 
acceptable physically other than for the instantaneous source. The singularity in (2.9) is stronger 
than this, but no difficulty or limitation arises in the applications, since b naturally lies outside 
the physical 0-range. In systems described by (2.1), (2.9), a source at initial concentration b has 
at least the same level of physical realism as does the classical diffusion source at initial infinite 
concentration. 

For nonhysteretic soil-water movement, a typical value for the saturation moisture content, 
0sa t, is 0.500; a typical "dry" initial moisture content, 0o, is 0.200; and the value D (Osat)/D (0o)= 
3400 is characteristic. These values require b=0.509. The corresponding value of 0 (0, z) is 
then 0.0177, which occurs for z -~ 0.0001. It will be seen from Figure 1 that the profile for z = 0.0001 
is almost indistinguishable from a step-function. Our solution would in this case hold for 
redistribution from a virtual step-function with 0 = 0 s a t ,  with a minor correction to the origin 
ofz.  
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4.3. Redistribution from other initial distributions 

The profiles yielded by our solution vary systematically from a step-function at z =0  to a 
Gaussian in the limit as r--,oo. We thus have the opportunity to match initial distributions of 
various intermediate shapes. Fitting the initial distribution to the appropriate solution profile 
characterized by a value of 0 (0, z) fixes b, so that, with this procedure, the one assignable 
parameter for matching diffusivity data is a. 

4.4. Case o f  infinite b 

I f l i m ~  ab-  2 = constant = c(0 < c < co), our problem reduces to one in linear diffusion. We find 
that, in this limit, x . -~0 and the foregoing solution approaches the classical instantaneous 
point source solution, as it should. 

5. Nonlinear redistribution in the finite region 

The nonlinear diffusion equation is mathematically less amenable in the finite region than in 
the semi-infinite and infinite ones. The only exact unsteady solutions of (2.1) in the finite region 
known hitherto are somewhat artificial and are valid only for a finite time interval. One class 
of such solutions can be constructed by truncating the region of the instantaneous source 
solution D oc 0" (n >0) [8, 9, 10];a  second class can be constructed by truncating appropriate 
exact solutions in the semi-infinite Fegion which follow from the inverse method of Philip 
[14]* ; and a third class follows similarly from exact solutions in the infinite range [14]**. We 
present here the first unsteady nonlinear solutions in the finite region in explicit exact form 
which hold for 0 < z <__ co and which are free of the physically artificial requirement that D = 0 
for at least one point of the relevant 0-range***. 

5.1. General solution 

We consider the redistribution by nonlinear diffusion of an initial distribution of diffusate in 
the finite region of length l, bounded by surfaces across which no flow is possible. We seek the 
solution of (2.1), (2.9) subject to the conditions 

t = O , O <_ x < l , O = Oo(x) ; (5.1a) 

t > 0 ,  x = 0  and l ,  OO/c?x=O. (5.1b) 

The initial distribution 00 (x) is essentially arbitrary, though we require that it be a monotonic 
function of x (and, without further loss of generality, monotonic decreasing). We also require 
that 00 < b. 

The substitutions 

f ~ b - 0 b - Oo ~zx 7c 2 at 
00=1-1  Oo(x)dx ~ = , ~ o =  , ~ = - -  ~ -  (5.2) 

0 ' b -  0o b --  00 l ' 12 (b - 0 0 )  2 ' 

reduce (2.1), (2.9), (5.1a), (5.1b), to (3.3) subject to the conditions 

= 0 ,  0 < ~ < ~ ,  O = S o ( 4 ) ;  (5.3a) 

z > 0 ,  ( = 0  and re, ~ 0 / 0 ~ = 0 .  (5.3b) 

Transformations (3.5), (3.6a) then linearize the problem to (3.7) subject to the conditions 

z = 0 ,  0 _ < Z < ~ ,  O = O 0 ( E ) ;  (5.4a) 

> 0 ,  3 = 0  and ~ ,  ~ O / ~ = 0 .  (5.4b) 

* Table 1 of [14] includes 11 of the simplest functional forms of D(O) for which this is true. 
** Table 3 of [14] includes 11 of the simplest functional forms of D(O) for which this is true. 
*** The first and second classes require D ~ 0  at one end of the 0-range; the third class requires D ~ 0  at both ends 

of the range. 
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Here O0 = 0o ~. 
The Fourier cosine expansion of O0 is 

O 0 =  1 + ~ ~ c o s n 3 ,  (5.5a) 
n = l  

with 

Oo(2) cos n Z d Z .  (5.5b) 0~n~ ~ 0 

The required solution of (3.7), (5.4a), (5.4b) is therefore [12, p. 101] 

O ( 3 , ~ ) =  1 + ~ c~,e-"2~cosn3. (5.6) 
n = l  

It follows from (3.6b) that 

(3, ~) = ~ + ~ e~" e -"2~ sin nS.  (5.7) 
n = l  n 

Equations (5.6), (5.7) represent the exact solution for nonlinear redistribution in the finite 
region. In general the solution is implicit and ~ (O, z) [whence x (0, t)] is found through numer- 
ical elimination of ~ between (5.6) and (5.7)*. 

We observe, however, that truncations of (5.5a) and (5.6) at n = N are reducible to polynomials 
of degree N in cos S. Since the roots of polynomials of degree 4 and less may be extracted 
explicitly, it follows that, in the cases N = 1, 2, 3, 4, (5.6) may be rewritten as an explicit expression 
for S (O, ~). Substitution in (5.7)then yields ~ (O, -c) [whence x (0, t)] explicitly. The cases N = 3 
and 4 are too complicated to be useful; but the cases N--  1 and 2 are of interest. We develop 
these below. 

52. Explicit  solution in case N = 1 

For  N = 1, we take 

O0 = 1 + cq cos ~ ,  (5.8) 

with 0 < ~1 < 1. The inequality ensures that 0 < b. The required solution is then 

O (if, ~) = 1 + cq e -~ cos 3 .  (5.9) 

Also, from (3.6b), 

4(3, ~) = ~ + ~  e -~ sin ~ .  (5.10) 

Now, we have from (5.9) that 

= cos-1 [e~-i e ~ (O - 1)],  

so that we may write (5.10) in the explicit form 

(O, z) = cos-1 [~i-1 e ~ (O - 1)] + [a~ e-  2~_ (O - 1)2] �89 . (5.11) 

We observe that we may parametize the C (O) relations for all 0q and for all z > 0 through the 
quantity 

u = cq e -~ . (5.12) 

We have then that 

(O, u) = cos 1 [u-1 ( O -  1)] + [u 2 - ( O -  1)2] ~ . (5.13) 

* Note that the limiting process of subsection.4.4 here yields O o -  1~0 ,  and the solution approaches that for linear 
diffusion, as it should. 
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Figure 2. Nonlinear distribution in the finite region: explicit exact solution in case N = 1. The time course of concen- 
tration in the dimensionless form 1 - 0 ( 4 ,  ~). Note that 1 - O = ( 0 - 0 0 ) / ( b - 0 0 ) .  ~ is the reduced space coordinate. 
u = al e-t, where z is the reduced time, and the initial distribution, in reduced form, is given by ~ = cos-  1 [al (O- ~ - I)]  + 
[~2 _ (8- ~ _ 1)2]~ Numerals on the curves denote values of u. The time course of redistribution for given al is repre- 
sented by the sequence of curves u <  cq. 
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Figure 3. Nonlinear distribution in the finite region: explicit exact solution in case N = 2 .  The time course of concen- 
tration in the dimensionless form 1 -0 (4 ,  z). Note that 1 - 0 = ( 0 - 0 o ) / ( b - 0 0 ) .  ~ is the reduced space coordinate. 
Numerals on the curves denote values of the reduced time r. Solution for ~1 =0.72, c~ 2 =0.18. 
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For given u, ~ goes from 0 to rc as O goes from 1 + u  to 1 - u .  For  any given ~ ,  the solution 
x (0, t), of course, follows at once from (5.11) or (5.13). Figure 2 graphs the solution in the form 
(0 -  Oo)/(b- 00) [ = 1 - 0 = 1 - O-  1] against ~ for various u. The time course of the redistribution 
process corresponding to a particular el-value is represented by the sequence of curves with 
u < ~1, the curve u = cq representing (in reduced form) the appropriate 00 (x). 

5.3. Explicit solution in case N = 2 

For N = 2 we take 

0 0 = l q - G (  1 COS , - ? q - a  2 COS 2~ .  (5.14) 

The inequality 0 < el - e z  < 1 ensures that 0 < b; and the further inequality lea I<  �88 1 ensures 
that 00 (x) is monotonic decreasing. The required solution is then 

0 ( 2 ,  z) = l + e ~  e -~ cos  3-1-~2 e -4z cos 2 2 ,  (5.15) 

whence, from (3.6b), 

r z) = ~ + 7 1  e-~ sin ~ + ~ e 2 e  -4~ sin 2~ .  (5.16) 

It follows from (5.15) that 

ff = cos 1 [zea l  e3~ { [e2 + 8e 2 e- 2z(O - 1)+ 8e 2 e-  6~]~ _ el} ] 
= cos - t  [o(O, z ) ] .  (5.17) 

The explicit form of (5.15) is therefore 

( o ,  = c o s - 1 0  + + 0 - d )  . (5.18) 

Note that r goes from 0 to rc as O goes from l + c q  e-~+ct2 e-4~ to 1 - a l e - ' + ~ z ~ L  
Calculations for N = 2  are more complicated than those for N =  t, but two-parameter 

representation of O0 naturally provides greater flexibility in fitting initial distributions. A 
useful class of shapes of O0 is generated by taking c~ z = 1 ~ .  In this case there are some simplific- 
ations to the algebra. 

Figure 3 shows the solution for the case ~= 0 .7 2 ,  az=0.18, in the form (O-Oo)/(b-Oo) 
against ~ for various z. The curve for z = 0 should be compared with that for u = 0.9 in Figure 2. 
Both curves have (00 (0)-Oo)/(b-  00)= 0.474. The differences between them are indicative of 
the range of Oo(x) shapes which may be represented, 
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